Probability density function![]() |
|
Cumulative distribution function![]() |
|
parameters: | ![]() ![]() |
---|---|
support: | ![]() |
pdf: | ![]() |
cdf: | ![]() |
mean: | ![]() |
median: | ![]() |
mode: | ![]() ![]() |
variance: | ![]() |
skewness: | ![]() |
ex.kurtosis: | see text |
entropy: | see text |
mgf: | ![]() |
cf: | ![]() |
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval (0, 1) parameterized by two positive shape parameters, typically denoted by α and β. It is the special case of the Dirichlet distribution with only two parameters. Just as the Dirichlet distribution is the conjugate prior of the multinomial distribution and categorical distribution, the beta distribution is the conjugate prior of the binomial distribution and bernoulli distribution. In Bayesian statistics, it can be seen as the likelihood of the parameter p of a binomial distribution from observing α − 1 independent events with probability p and β − 1 with probability 1 − p.
Contents |
The probability density function of the beta distribution is:
where is the gamma function. The beta function, B, appears as a normalization constant to ensure that the total probability integrates to unity.
The cumulative distribution function is
where is the incomplete beta function and
is the regularized incomplete beta function.
The expected value (), first central moment, variance (second central moment), skewness (third central moment), and kurtosis excess (forth central moment) of a Beta distribution random variable X with parameters α and β are:
The skewness is
The kurtosis excess is:
In general, the th raw moment is given by
where is a Pochhammer symbol representing rising factorial. It can also be written in a recursive form as
One can also show that
Given two beta distributed random variables, X ~ Beta(α, β) and Y ~ Beta(α', β'), the information entropy of X is [1]
where is the digamma function.
The cross entropy is
It follows that the Kullback–Leibler divergence between these two beta distributions is
The beta density function can take on different shapes depending on the values of the two parameters:
Moreover, if then the density function is symmetric about 1/2 (red & purple plots).
Let
be the sample mean and
be the sample variance. The method-of-moments estimates of the parameters are
When the distribution is required over an interval other than [0, 1], say , then replace
with
and
with
in the above equations.[2][3]
Beta(i, j) with integer values of i and j is the distribution of the i-th order statistic (the i-th smallest value) of a sample of i + j − 1 independent random variables uniformly distributed between 0 and 1. The cumulative probability from 0 to x is thus the probability that the i-th smallest value is less than x, in other words, it is the probability that at least i of the random variables are less than x, a probability given by summing over the binomial distribution with its p parameter set to x. This shows the intimate connection between the beta distribution and the binomial distribution.
A classic application of the beta distribution is the rule of succession, introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. It states that, given s successes in n conditionally independent Bernoulli trials with probability p, that p should be estimated as . This estimate may be regarded as the expected value of the posterior distribution over p, namely Beta(s + 1, n − s + 1), which is given by Bayes' rule if one assumes a uniform prior over p (i.e., Beta(1, 1)) and then observes that p generated s successes in n trials.
Beta distributions are used extensively in Bayesian statistics, since beta distributions provide a family of conjugate prior distributions for binomial (including Bernoulli) and geometric distributions. The Beta(0,0) distribution is an improper prior and sometimes used to represent ignorance of parameter values.
The beta distribution can be used to model events which are constrained to take place within an interval defined by a minimum and maximum value. For this reason, the beta distribution — along with the triangular distribution — is used extensively in PERT, critical path method (CPM) and other project management / control systems to describe the time to completion of a task. In project management, shorthand computations are widely used to estimate the mean and standard deviation of the beta distribution:
where a is the minimum, c is the maximum, and b is the most likely value.
Using this set of approximations is known as three-point estimation and are exact only for particular values of α and β, specifically when[4]:
or vice versa.
These are notably poor approximations for most other beta distributions exhibiting average errors of 40% in the mean and 549% in the variance[5][6][7]
We introduce one exemplary use of beta distribution in information theory, particularly for the information theoretic performance analysis for a communication system. In sensor array systems, the distribution of two vector production is used for the performance estimation in frequent. Assume that s and v are vectors the (M − 1)-dimensional nullspace of h with isotropic i.i.d. where s, v and h are in CM and the elements of h are i.i.d complex Gaussian random values. Then, the production of s and v with absolute of the result |sHv| is beta(1, M − 2) distributed.
A beta distribution with the two shape parameters α and β is supported on the range [0,1]. It is possible to alter the location and scale of the distribution by introducing two further parameters representing the minimum and maximum values of the distribution.[8]
The probability density function of the four parameter beta distribution is given by
The standard form can be obtained by letting
|
|